2023年に実際に使った方法を書いておく.ダイヤ改定などがあり得るのでくれぐれも詳細は各バス会社+鉄道会社などでご確認を.
隼人駅(0552)==(JR肥薩線+吉都線・南宮崎行)==>(0717)えびの飯野駅(0717)==(徒歩15分)==>(0732)飯野高速バス停(0739)==(高速バスなんぷう号・熊本行)==>(0937)通町筋バス停(0937)==(徒歩48分)==>(1025)熊大黒髪南地区
国分駅から隼人駅まで徒歩で約35分か(上記時間にて国分駅から隼人駅への電車(JR日豊本線)は運行せず).料金はJR分が片道1130円.高速バスなんぷう号がWeb早割で3560円.合計4690円也.
How to copy all files into a directory and zip that directory in the Linux terminal
For example, please suppose that there are three files in the home directory: a.pdf, b.xlsx, and c.docx, and you would like to create a zip file 'abc.zip' containing the directory 'abc' with those three files.
1. Make a directory 'abc'.
$ mkdir abc
2. Copy the above three files into the directory 'abc'.
$ cp a.pdf abc
$ cp b.xlsx abc
$ cp c.docx abc
3. Zip the directory 'abc'.
$ zip -r abc.zip ./abc/
1. Make a directory 'abc'.
$ mkdir abc
2. Copy the above three files into the directory 'abc'.
$ cp a.pdf abc
$ cp b.xlsx abc
$ cp c.docx abc
3. Zip the directory 'abc'.
$ zip -r abc.zip ./abc/
Labels:
Arch Linux,
Debian,
Fedora,
Linux Mint,
Lubuntu,
Mac,
Ubuntu,
UNIX,
UNIX コマンド,
Vine Linux,
xubuntu,
ソフトウェア,
メモ
To compute some values by Xcas
If you compute the following values by Xcas, then you should execute commands below. See also this page.
Case 1. One computes any maximum values for given functions with 1 parameter, for example y=x2−4x+5 for 37/19≤x≤35/17. Then, he should execute as follows. The answer must be 290/289.
Case 2. One computes any minimum values for given functions with 2 parameters, for example z=x3+y3−xy for x>0 and y>0. Then, he should execute as follows. The answer must be −1/27.
Case 3. One computes any maximum values for given 2-parameter-functions with 1 bounded condition, so-called Lagrange Multiplier method, for example z=x/2+y/3+√1−(x2/4)−(y2/9) with x+y=5√3/3. Then, he should execute as follows. The answer must be (10√3−4)/9.
Case 4. One differentiates any implicit functions such as ylnx=xlny (x>0 and y>0). Then, he should execute as follows. The answer must be (dy/dx=)(y2−xylny)/(x2−xylnx).
Case 1. One computes any maximum values for given functions with 1 parameter, for example y=x2−4x+5 for 37/19≤x≤35/17. Then, he should execute as follows. The answer must be 290/289.
maximize(x^2 - 4*x + 5, x=37/19..35/17)
Case 2. One computes any minimum values for given functions with 2 parameters, for example z=x3+y3−xy for x>0 and y>0. Then, he should execute as follows. The answer must be −1/27.
minimize(x^3 + y^3 - x*y, [x > 0, y > 0], [x, y])
Case 3. One computes any maximum values for given 2-parameter-functions with 1 bounded condition, so-called Lagrange Multiplier method, for example z=x/2+y/3+√1−(x2/4)−(y2/9) with x+y=5√3/3. Then, he should execute as follows. The answer must be (10√3−4)/9.
maximize((x/2) + (y/3) + sqrt(1 - (x^2 / 4) - sqrt(y^2/9)), x + y = 5*sqrt(3)/3, [x, y])
Case 4. One differentiates any implicit functions such as ylnx=xlny (x>0 and y>0). Then, he should execute as follows. The answer must be (dy/dx=)(y2−xylny)/(x2−xylnx).
implicitdiff(y*ln(x) = x*ln(y), y, x)
自分の本棚内の聖文(新)社コレクション
中古本を買って利用するスタイル.
H19年度,全国大学数学入試問題詳解,私立大学.
H17年度,全国大学数学入試問題詳解,医歯薬.
H16年度,全国大学数学入試問題詳解,II集.
H15年度,全国大学数学入試問題詳解,II集.
H15年度,全国大学数学入試問題詳解,医歯薬.
H14年度,全国大学数学入試問題詳解,III集.
H13年度,全国大学数学入試問題詳解,II集.
H12年度,全国大学数学入試問題詳解,I集.
H19年度,全国大学数学入試問題詳解,私立大学.
H17年度,全国大学数学入試問題詳解,医歯薬.
H16年度,全国大学数学入試問題詳解,II集.
H15年度,全国大学数学入試問題詳解,II集.
H15年度,全国大学数学入試問題詳解,医歯薬.
H14年度,全国大学数学入試問題詳解,III集.
H13年度,全国大学数学入試問題詳解,II集.
H12年度,全国大学数学入試問題詳解,I集.
Subscribe to:
Posts (Atom)